PREPARATION AND CHARACTERIZATION OF NATURALLY OCCURRING LONGIPINENE ESTERS

PEDRO JOSEPH-NATHAN,* CARLOS M. CERDA,

Departamento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, D.F., 07000 Mexico

LUISA U. ROMÁN, and JUAN D. HERNÁNDEZ

Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58240 Mexico

ABSTRACT.—Development of methodology for the introduction of angeloyl, tigloyl, senecioyl, methacryl, and acetyl groups at specific hydroxyl groups of longipin-2-ene-7 β ,9 α -diol-1-one [**36**] allows the preparation of a systematic series of esters, which includes the 25 possible combinations of diesters and the 10 monoesters at C-7 or C-9. The full assignment of their ¹H- and ¹³C-nmr spectra using two-dimensional chemical shift correlation diagrams, ¹H-coupled ¹³C spectra, and selective ¹³C-¹H decoupled spectra, as well as their mp, ir, uv, and optical activity, provide the data to characterize many constituents of the genus *Stevia* which are reported as oils or even in mixtures.

Longipin-2-ene- 7β ,9 α -diol-1-one esters, represented in Figure 1, constitute an important group of naturally occurring substances widely distributed in the genus *Stevia* (1–9). Many of these compounds have been described as oils or only detected in mixtures (1–3). In recent years, we established the stereochemistry (10), absolute configuration (11), and conformation (11) of these structurally complex sesquiterpenes, but a full characterization of such molecules is still needed. Therefore in the present paper we describe the preparation, starting from longipin-2-ene- 7β ,9 α -diol-1-one [**36**], of a systematic series of esters, whose acyl groups are angeloyl, tigloyl, senecioyl, methacryl, and acetyl (Table 1). The products were characterized by the complete assignment of their ¹H- and ¹³C-nmr spectra, as well as by mp, ir, uv, and optical activity.

FIGURE 1. Longipin-2-ene-7 β ,9 α -diol-1-one esters.

RESULTS AND DISCUSSION

The preparation of the longipinene esters listed in Table 1 required the development of a methodology that allows the introduction of each ester residue at the desired position. For this purpose, we took advantage of the previously noticed difference (11) between the chemical reactivity of both hydroxyl groups of 36 as a consequence of their different orientation (7-eq vs. 9-ax). Thus, esterification of 36 (10) with ca. 1.8 mol equiv of the five acyl chlorides: AngCl (12), TiglCl (13), SenCl, MeacrCl, and AcCl gave, in each case, the diester and the C-7 monoester as the main products and the C-9 monoester in small amounts. In all cases, the reaction products could easily be separated by chromatography, affording the diesters 1 (9), 8, 15, 22, and 29 (10), the C-7 monoesters 6, 12, 18, 24, and 30, and the C-9 monoesters 31, 32, 33 (9), 34, and 35. The mixed diesters having a tiglate, seneciate, methacrylate, or acetate group at C-7 were prepared by esterification of the corresponding monoesters 12, 18, 24, and 30 with the desired acyl chlorides. This procedure provided sixteen diesters 7, 9-11, 13, 14, 16, 17, 19–21, 23, and 25–28. In order to avoid isomerization of angelate residues, a route involving protection of the C-7 hydroxyl group of 36 with p-nitrobenzoyl chloride allowed the preparation of the mixed diesters having the angelate group at C-7: 2, 4, and 5. Compound 3 was prepared previously (9). Treatment of the p-nitrobenzoate 37 (9) with the acyl chlorides AngCl, TiglCl, MeacrCl, and AcCl, followed by selective hydrolysis of the p-nitrobenzoate group, afforded the C-9 monoesters 31, 32. 34, and 35. Compounds 32, 34, and 35 were treated with angeloyl chloride (12) to yield 2, 4, and 5, respectively. Although the preparation of these diesters could be attempted directly from the 7-monoangelate $\mathbf{6}$, we preferred to avoid a second esterification step in the presence of an already existing angeloyl group. Furthermore, the route involving the p-nitrobenzoate protective group afforded better yields of the C-9 monoesters 31, 32, 33 (9), 34, and 35 than the direct esterification procedure.

In general, the introduction of angeloyl groups was achieved by treating the corresponding starting materials (Table 1) with angeloyl chloride (12) in CCl_4 , CH_2Cl_2 , or MeCN at room temperature. While tiglates, seneciates, and acetates were prepared using the corresponding acyl halides (13) essentially under the above reaction conditions, methacrylates were obtained using methacryl chloride in CH_2Cl_2 , and in the presence of 4-(N,N-dimethylamino)-pyridine, triethylamine, and phenothiazine. The use of phenothiazine significantly improved the reaction yields by avoiding polymerization of methacrylate residues.

The structures of the esters were confirmed by ¹H- and ¹³C-nmr measurements; the data are summarized in Tables 2 and 3, respectively. Some assignments of the sesquiterpene moiety (4, 10) and of the ester residues (14–17) follow from literature data. However, other signals required further detailed nmr measurements; therefore, the two-dimensional chemical shift correlation diagrams of **6**, **24**, **29**, and **33**, the ¹H-coupled ¹³C spectra of **1**, **29**, **30**, and **35**, and selective ¹³C-¹H decoupled spectra of **1** and **29** were obtained.

The assignment of the proton signals of the H-13 to H-15 methyl groups of the diesters followed (4) from nOe effects. The assignment for **1** is shown in Figure 2a, and therefore, a ${}^{13}C{}^{-1}H$ heteronuclear chemical shift correlation diagram of any diester allows assignment of the signals of these groups in the ${}^{13}C$ domain, as exemplified for **29** (Figure 2b). These ${}^{13}C{}-nmr$ assignments were extensive by analogy to all the series including C-7 and C-9 monoesters as shown in Table 3. In contrast, assignments of the 'H-nmr signals of these methyl groups (H-13 to H-15) in the monoesters cannot be made by comparison with those of the diesters, due to a remarkable difference in chemical shifts (Table 2). However, they again follow from the two-dimensional chemical shift correlation diagrams of the C-7 monoester **6** and of the C-9 monoester **33**, as

37	
- - -	
pur	
odu	
Con	
Jo	
du	
and	
eld,	
ž	
ion,	
îcat	
uri	
n, F	
atio	
par	•
Pre	
, entre	
ucti	
Str	
Ξ.	
3LE	
TAI	

mp (°)	140-142°	(needles)	121-123	(prisms)	131-132	(needles)	125-127	(needles)	122-124	(prisms)	140-142	(prisms)	140-142°	(prisms)	138-140	(prisms)	137-138	(needles)	91–93°	(needles)	93-95°	(prisms)	126-128°	(prisms)	_93–95°	(prisms)	120–123°	(prisms)
Yield (%)	62		87		25 ^r		65		68		43 ¹		60		77		36'		62		57		60		21		60	
Chromatographic solvent	CH ₂ Cl ₂	1	CH ₂ Cl ₂		1. CH_2Cl_2	2. CHCl ₃ -ErOH (99:1)	CH ₂ Cl ₂		CH ₂ Cl ₂		1. CH_2Cl_2	2. CHCl ₃ -EtOH (99:1)	CH ₂ Cl ₂		CH ₂ Cl ₂		1. CH ₂ Cl ₂	2. CHCl ₃ -ErOH (99:1)	CH ₂ Cl ₂		CH ₂ Cl ₂		CH ₂ Cl ₂		1. CH ₂ Cl ₂	2. CHCl ₃ -ErOH (99:1)	CH ₂ Cl ₂	
Reaction time (h)	24		24		48		24		24		48		24		24		48		20		24		24		24		24	
Catalysts	DMAP ^u (40 mg)	Et ₃ N (0.5 ml)	none		none		none		none		none		DMAP ^u (40 mg)	$Et_3N(0.5 ml)$	none		none		none		none		none		DMAP ^u (600 mg)	Et ₃ N (8 ml)	none	
Acyl chloride	MeacrCl ^t	(300 mg)	AcCl	(300 mg)	TiglCl	(2.2g)	AngCl	(300 mg)	TiglCl	(300 mg)	SenCl	(2.2g)	MeacrCl ^t	(300 mg)	AcCI	(500 mg)	SenCl	(2.2 g)	AngCl	(400 mg)	TiglCI	(300 mg)	SenCl	(300 mg)	MeacrCl ^t	(2.25 g)	AcCI	(500 mg)
Solvent	CH ₂ Cl ₂	(10 ml)	CH ₂ Cl ₂	(10 ml)	MeCN	(150 ml)	CCI₄	(10 ml)	CCI₄	(10 ml)	MeCN	(150 ml)	CH_2CI_2	(10 ml)	CH ₂ Cl ₂	(15 ml)	MeCN	(100 ml)	CH ₂ Cl ₂ -CCl ₄	(2:1)(15 ml)	CH ₂ Cl ₂	(10 ml)	CH ₂ Cl ₂	(10 ml)	MeCN	(150 ml)	CH ₂ Cl ₂	(10 ml)
Starting material	12	(400 mg)	12	(200 mg)	36	(3g)	18	(300 mg)	18	(250 mg)	36	(3g)	18	(350 mg)	18	(300 mg)	36	(3g)	24 ⁿ	(400 mg)	24 ⁿ	(300 mg)	24 ⁿ	(300 mg)	36	(3g)	24 ⁿ	(300 mg)
R ²	Meacr		Ac		Н		Ang		Tigl		Sen		Meacr		Ac		Η		Ang		Tigl		Sen		Meacr		Ac	_
R'	Tigl		Tigl		Tigl		Sen		Sen		Sen		Sen		Sen		Sen		Meacr		Meacr		Meacr		Meacr		Meacr	_
Compound	10 ^{a.j.s}		11		12		13		14		15 ^{a,j}		16		17		18		19^{a-c,t,j}		20**		21 ^{a.j}		22 ^{a.f.j}		23	

TABLE 1. Continued

...

Compound	R¹	R ²	Starting material	Solvent	Acyl chloride	Catalysts	Reaction time (h)	Chromatographic solvent	Yield (%)	(_) du
24	Meacr	H	96	MeCN	MeacrCl ^t	DMAP ^u (600 mg)	24	1. CH ₂ Cl ₂	17 ^r	130-132°
-		:	(3 2)	(150 ml)	(2.25 g)	Et ₃ N (8 ml)		2. CHCl ₃ -ErOH (99:1)		(prisms)
25	Ac	Ane		ccl	AngCl	none	24	CH ₂ Cl ₂	72	125-127
\ I		0	(200 mg)	(15 ml)	(250 mg)				Į	(prisms)
26	Ac	Tigl	30	CCI4	TiglCl	none	24	CH ₂ Cl ₂	9	158-140
)	(250 mg)	(15 ml)	(400 mg)				0	(prisms)
27	Ac	Sen	30	ccl₄	SenCl	none	24	CH ₂ Cl ₂	8	[4]-147
			(230 mg)	(15 ml)	(300 mg)		Ì		Ş	(powder)
28	Ac	Meacr	30	CH ₂ Cl ₂	MeacrCl ^c	DMAP ^u (40 mg)	24	CH ₂ Cl ₂	70	771-071
			(400 mg)	(10 ml)	(300 mg)	Et ₃ N (0.5 ml)				(needles)
29	Ac	Ac	36	MeCN	AcCI	none	48	$1. \mathrm{CH}_{2}\mathrm{Cl}_{2}$	37	150-158
ì	-		(3 g)	(150 ml)	(1.7g)			2. CHCl ₃ -ErOH (99:1)		(needles)
30	Ac	Н	36	MeCN	AcCI	none	48	1. CH ₂ Cl ₂	50 <u>-</u>	106-108
2			(3 g)	(150 ml)	(1.7 g)			2. CHCl ₃ -EtOH (99:1)		(prisms)
31 ^{a-c,j,q}	Η	Ang	37	(1)CH ₂ Cl ₂ -CCl ₄	AngCl	none	24	1		
)	(400 mg)	(2:1)(15 ml)	(400 mg)				ì	
)	(2) CH ₂ Cl ₂ -MeOH	1	KOH"	0.5	CH ₂ Cl ₂	2	11/-170
			-	(1:5)(120 ml)		(670 mg)				(needles)
32	Н	Tigl	37	(1)CH ₂ Cl ₂	TiglCl	none	0.5			
			(800 mg)	(20 ml)	(1g)	5			97	115 117
				(2) CH ₂ Cl ₂ -MeOH	1	KOH	0.0		8	
		_		(1:5)(120 ml)		(1.34g)				(emend)
33 ^{a,j,k}	H	Sen	37	(1)CH ₂ Cl ₂	SenCl	none	0.5			
			(800 mg)	(20 ml)	(1g)				Ś	071 771
	. <u></u>	_)	$(2) CH_2 Cl_2 - MeOH$	1	KOH [*]	0.5	CH ₂ Cl ₂	79	140-148
	_			(1:5)(120 ml)		(1.34g)				(needles)
34	H	Meacr	37	(1) CH ₂ Cl ₂	MeacrCl ^t	DMAP ^u (100 mg)	10			
-			(900 mg)	(20 ml)	(700 mg)	$Et_3N(1.2 ml)$			3	
			.	$(2) CH_2 Cl_2 - MeOH$	1	KOH ^{n,x}	0.5	CH ₂ Cl ₂	6	0C1-CC1 (prisms)
-			_	(1:5)(120 ml)	_	(1.24 g)			_	

TABLE 1. Continued

				T	ABLE 1. C	ontinued				
Compound	R'	R ²	Starting material	Solvent	Acyl chloride	Catalysts	Reaction time (h)	Chromatographic solvent	Yield (%)	mp (°)
35	Н	Ac	37 (800 mg)	(1) none	AcCl (4 e)	none	0.2			
				(2) MeOH	<i>i</i> 9.1	WOH*	0.1	CH ₂ Cl ₂	70	132-134
36'	Н	Н			ĺ	(0/0/mg) 	1			(prisms) 183—184
37*	p-NO ₂ Bz	Н		1		ļ				(powder) 195-196 (nowder)
"Notice	and the factor	Control of	(c) - 1 - 7 1							(powder)
^b From S ^c From S ^d From S From S	tevia mandonii tevia boliviensis tevia berlandier tevia lemmonia ((3). (3). (4). (4).	i)sepoata (2).							
From Si Brom S	tevia salicifolia tevia mercedensi.	(4). [5].								
"From S From St	tevia potrerensis evia aristata (7	. (9)								
^j The ster ^k Its prer	reostructure re-	ported in B	references pric	or to 1982 was reassigned	in Román et a	4. (10) and in Bohlman	n et al. (18).			
The mo	noesters at C-	7 and C-9	are also obtair	ned.						
"From J	itevia jaliscensis hiazine (2 mg)	(1). was adde	d to the reactiv	on mixture.						
^o Before	recrystallizatio	ns, phenc	othiazine (ca. 0	.5 mg) was added.						
⁹ From J	tevra lucida (8). ve partial hude	Alveie of e	the server miner.	and the second sec						
"The die	ster and the m	onoester a	at C-9 are also.	ue nom <i>3. jaunemun</i> (1). obtained.						
From Si	evia serrata (2)									
'Freshly	distilled and s	tabilized	with phenothi	azine (500 ppm).						
"DMAP	= 4-(N, N-din	nethylam	ino)-pyridine.							
'Its prep	aration is also	reported	in Román et al	. (10).						
$_{10}^{\text{H}}$ H $_{2}^{\text{C}}$) (2 ml).									
$1_{\rm h}$ H ₂ C	(3 ml).									
'Under I	eflux.									

MHz). ^a
(300
1-36
Compounds
)ata of (
¹ H-nmr [
TABLE 2.

	12	5.79	2.57	2.28	5.06	1.98	2.26	3.87 ^c	3.12	2.04	1.12	1.08	0.91	Tigl	6.86		1.81	1.84	Н	۱		ł			1.65
	11	5.81	2.64	2.32	5.01	2.07^{b}	2.15	4.99	3.17	2.06	1.00	1.08	0.91	Tigl	6.82	1	1.79	1.82	Ac	2.18	1				1
	10	5.81	2.67	2.34	5.09	2.06	2.23	5.12	3.17	2.06	1.01	1.09	0.92	Tigl	6.81	1	1.78	1.80	Meacr	1	6.22	5.63	2.02		
	6	5.81	2.66	2.32	5.08	2.06	2.21	5.07	3.17	2.06	0.98	1.08	0.91	Tigl	6.81		1.78	1.82	Sen	5:81		ł	2.18	1.92	
	30	5.81	2.66	2.34	5.10	2.04	2.22	5.11	3.18	2.06	0.99	1.08	0.92	Tigl	6.81	1	1.78	1.81	Tigl	,	6.95		1.83	1.90	
puno	7	5.81	2.68	2.33	5.08	2.08	2.23	5.13	3.15	2.07	1.01	1.09	0.91	Tigl	6.81	1	1.78	1.81	Ang	,		6.13	2.03	2.01	
Com	9	5.79	2.57	2.29	5.10	2.00	2.27	3.88	3.13	2.03	1.12	1.07	0.93	Ang	,	6.10	2.02	1.90	Н			1	1		1.96
	\$	5.81	2.64	2.32	5.05	2.13 ^b	2.17 ^b	4.99	3.18	2.06	1.00	1.07	0.93	Ang	,	6.05	1.97	1.88	Ac	2.18	1	1	1		ł
	4	5.81	2.68	2.35	5.14	2.07	2.25	5.12	3.18	2.07	1.01	1.08	0.93	Ang	,	6.03	1.95	1.87	Meacr	1	6.22	5.63	2.03	I	
	ĸ	5.80	2.66	2.32	5.12	2.08	2.23	5.06	3.18	2.06	0.99	1.07	0.92	Ang	, (6.02	1.96	1.87	Sen	5.82		ł	2.19	1.93	
	2	5.81	2.66	2.34	5.16	2.05	2.24	5.11	3.20	2.06	1.00	1.07	0.93	Ang	,	6.02	1.95	1.87	Tigl	,	6.86	1	1.83	16.1	
	1	5.81	2.67	2.34	5.11	2.11	2.24	5.13	3.17	2.06	1.02	1.08	0.93	Ang	,	6.03	1.95	1.87	Ang	, I	1	6.11	2.03	2.01 ^b	1
Proton		H-2 (qdd)	H-4 (dd)	H-5 (s)	H-7 (dd)	H-8a (ddd)	H-8β (ddd)	···· (pp) 6-H	H-11 (dd)	Me-12 (d)	Me-13 (s)	Me-14 (s)	Me-15 (s)	$\mathbb{R}^{l} =$	H-3 cis ^d	H-3 trans ^d	H-4	H-5	$\mathbb{R}^2 =$	H-2	H-3 cis ^d	H-3 trans ^d	H-4	H-5	НО

Continued
ŗ.
TABLE

	24	5.79	2.58	2.28	5.10	1.99	2.28	3.88	3.13	2.04	1.12	1.07	0.92	Meacr	{	6.11	5.58	1.96	ł	Н	ł	ł	ł	ł		2.14
	23	5.81	2.64	2.32	5.01	2.09 ^b	2.16 ^b	4.99	3.17	2.06	1.00	1.08	0.92	Meacr		6.07	5.56	1.93		Υc	2.18	1		ļ	1	1
	22	5.82	2.67	2.34	5.09	2.07	2.24	5.12	3.17	2.07	1.01	1.09	0.93	Meacr		6.07	5.55	1.93		Meacr	1	6.22	5.64	2.03	1	
	21	5.81	2.68	2.33	5.09	2.08	2.24	5.08	3.17	2.07	0.99	1.09	0.92	Meacr		6.07	5.55	1.93	ł	Sen	5.81	ł	{	2.19	1.93	{
	20	5.82	2.68	2.35	5.11	2.06	2.25	5.13	3.19	2.07	1.00	1.09	0.93	Meacr		6.07	5.55	1.93		Tigl		6.96		1.84	1.91	
punoc	19	5.81	2.68	2.34	5.08	2.09	2.25	5.14	3.15	2.07	1.01	1.09	0.92	Meacr		6.07	5.54	1.93		Ang	1		6.14	2.04	2.01	
Com	18	5.78	2.58	2.27	5.08	1.96	2.25	3.87 ^c	3.13	2.03	1.12	1.04	0.89	Sen	5.68			2.18	1.91	Н	ł	ł	1	ł	1	2.34
	17	5.80	2.64	2.31	5.01	2.04	2.14	4.98	3.17	2.05	1.00	1.04	06.0	Sen	5.64	1		2.15	1.89	Υc	2.17					
	16	5.81	2.66	2.33	5.09	2.03	2.22	5.11	3.17	2.06	1.00	1.05	0.91	Sen	5.64		ļ	2.13	1.88	Meacr	1	6.21	5.62	2.02		
	15	5.79	2.65	2.31	5.08	2.04	2.19	5.05	3.17	2.05	0.98	1.04	0.90	Sen	5.64	1	}	2.14	1.88	Sen	5.81	ł	ł	2.18	1.92	
	14	5.80	2.66	2.33	5.12	2.00	2.22	5.11	3.19	2.06	0.99	1.05	0.91	Sen	5.64		۱	2.13	1.88	Tigl	ļ	6.95		1.83	1.90	
	13	5.80	2.66	2.32	5.07	2.07	2.21	5.12	3.15	2.06	1.01	1.05	0.90	Sen	5.64			2.13	1.88	Ang]		6.11	2.02 ^b	2.01 ^b	
Proton		H-2 (qdd)	H-4 (dd)	H-5 (s)	H-7 (dd)	H-8α (ddd)	Н-8β (ддд)	(PP) 6-H	H-11 (dd)	Me-12 (d)	Me-13 (s)	Me-14 (s)	Me-15 (s)	R ¹ =	H-2	H-3 cis ^d	H-3 trans ^d	H-4	H-5	$\mathbb{R}^2 =$	H-2	H-3 cis ^d	H-3 trans ^d	H-4	H-5	ОН

488

Continued	
2.	
TABLE	

Proton						Comp	puno					
	25	26	27	28	29	30	31	32	33	34	35	36
H-2 (qdd)	5.81	5.80	5.79	5.81	5.80	5.79	5.79	5.79	5.79	5.80	5.79	5.78
H-4 (dd)	2.66	2.67	2.64	2.65	2.63	2.56	2.64	2.63	2.62	2.63	2.61	2.56
H-5 (s) · · · · ·	2.32	2.32	2.30	2.33	2.30	2.26	2.33	2.33	2.31	2.33	2.31	2.28
H-7 (dd)	5.02	5.05	5.02	5.03	4.96	5.04	3.83	3.83	3.84	3.83	3.82	3.93
H-8a (ddd)	2.05	2.01	2.04	2.03	2.04	1.92	2.01	2.00	1.97	2.01	1.97	1.91
H-8β (ddd)	2.21	2.20	2.18	2.20	2.14	2.25	2.27	2.25	2.24	2.27	2.23	2.26
H-9 (dd)	5.11	5.09	5.04	5.09	4.96	3.86	5.16	5.10	5.07	5.11	5.05	3.86
H-11 (dd)	3.13	3.17	3.15	3.15	3.15	3.10	3.05	3.09	3.08	3.08	3.07	3.03
Me-12 (d)	2.06	2.06	2.05	2.06	2.05	2.03	2.05	2.05	2.05	2.05	2.05	2.03
Me-13 (s)	1.01	0.99	0.98	1.00	0.99	1.11	0.98	0.97	0.96	0.98	0.96	1.10
Me-14 (s)	1.04	1.04	1.03	1.04	1.03	1.02	0.97	0.97	0.96	0.97	0.96	0.95
Me-15 (s)	0.90	0.91	0.90	16.0	06.0	0.89	1.01	1.02	1.00	1.01	1.00	0.99
$\mathbf{R}^{1}=$	Ψc	Ac	Ac	Ac	Ac	Ac	Η	Η	Н	Н	Н	Н
H-2	2.03	2.02	2.03	2.03	2.04	2.07			1	1	1	1
НО	-	ļ	ļ			ł	1.59	1.51	1.67	1.43	1.64	1.65
$\mathbb{R}^{2}=$	Ane	Tiel	Sen	Meacr	Ac	Н	Ane	Tiel	Sen	Meacr	Ac	Н
H-2	°	,	5.79		2.15	-	, ,	۰	5.72		2.10	1
H-3 cir ^d		6.94		6.21	-	-	I	6.89		6.14	ļ	
H-3 trans ^d	6.13	1		5.63	1	1	6.12	1		5.61		
H-4	2.03	1.82	2.18	2.01	ļ		2.01	1.81	2.18	1.96	1	1
H-5	1.99	1.89	1.92				1.92	1.85	1.92	1	1	
НО		1			-	1.72	I	ł	1			1.65
$a_{I_{2}}a = 1.5, J_{2}$	$_{1} = 1.5, J_{2}$	$_{12} = 1.5, J_4$	$J_{11} = 7.0, J_{11}$	$_{7,8\alpha} = 2.0,$	$I_{7 \text{ BR}} = 11.$	$5, J_{\text{Bot HB}} =$	15.0, J ₈₀ ,	$= 4.0, J_{86}$	$_{3,9} = 3.0; I$	Ang $J_{3,4} =$	$7.5, J_{3.5} =$	$1.5, J_{4.5} =$
1.5; Tigl $J_{3,4} = 7.0, J_{1,4} = $	$I_{3.5} = 1.5$	$J_{4.5} = 1.0;$	$\operatorname{Sen} J_{2,4} = 1$	$0, J_{2,5} = 1$.0; Meacr] 3(cis). 3(trans)	$= 1.5, J_{3cis}$	$J_{4} = 1.0, J_{4}$	$3^{(trans),4} = 1$.5. 8 in pp	m from in	ternal TMS.
Acyl hydrogen numb	cring is as	shown in T	able 1.									
^b Complex signa	ıl.											

May-Jun 1989]

489

^cQuartet $(J_{9,OH} = 3.5)$. ^dWith respect to the carbonyl group.

ABLE 3. ¹³ C-nmr Data of Compounds 1–36 (75.4 MHz).ª
ABLE 3. ¹³ C-nmr Data of Compounds	1-36 (
ABLE 3. ¹³ C-nmr Data of Co	mpounds
ABLE 3. ¹³ C-nmr Dat	a of Co
ABLE 3. ¹³ C-n	mr Dat
ABLE 3.	C-n
	ABLE 3.

203.81 122.74 170.85 48.83 66.08 66.08 37.55 57.34 57.34 57.34 57.34 57.34 52.93 57.34 52.93 22.33 56.23 26.23 Tigl 167.61 128.91 137.25 14.40 12.03 12 H | 203.08 1170.35 48.45 65.82 65.82 77.49 31.96 75.13 31.96 75.13 55.61 75.13 55.61 18.90 18.90 26.15 26.15 Tigl 167.15 128.86 137.09 14.32 12.05 Ac 170.74 21.11 — 11 202.95 1122.82 1170.28 48.50 65.92 75.12 75.12 75.12 75.12 55.96 55.84 55.84 55.84 12.33 22.33 42 23.34 18.99 18.99 18.99 Tigl 167.000 128.845 137.10 14.31 12.08 Meacr 166.84 136.22 126.25 18.38 10 203.28 122.81 170.46 48.47 48.47 75.92 55.92 55.05 53.87 55.05 53.87 22.33 56.05 53.87 22.33 8 22.33 8 22.33 26.27 20.11 19.11 Tigl 167.05 128.888 128.888 137.03 14.34 14.34 12.10 Sen 166.07 116.00 157.50 20.41 20.41 27.56 9 Tigl 166.99 128.88 137.04 14.31 14.31 Tigl 167.48 128.55 128.55 138.07 14.51 14.51 œ 202.97 122.81 170.34 48.42 65.88 65.88 37.57 72.47 72.47 72.47 72.47 74.61 55.91 55.91 55.91 19.01 19.01 Tigl 166.95 128.85 137.03 14.31 12.08 Ang 167.18 128.01 138.66 15.86 20.67 1 Compound 203.60 122.83 170.64 48.88 48.88 66.10 66.10 72.52 35.72 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.29 57.20 52.33 57.20 52.25 52.26 52.25 52. Ang 167.53 128.01 138.36 15.82 15.82 20.64 Η | 9 203.14 122.82 170.37 48.45 65.83 37.29 37.29 32.10 75.16 75.16 75.16 75.16 75.16 23.37 23.37 21.35 21.35 21.35 21.35 21.35 221.35 Ang 167.08 127.98 137.91 15.77 20.62 Ac 170.91 21.13 ŝ - 1 202.77 122.68 170.29 48.47 65.86 65.86 65.86 72.12 75.19 37.36 53.84 55.86 53.84 55.86 53.84 10.11 26.17 20.17 26.17 26.17 26.17 26.17 26.17 26.17 26.29 26.20 26.20 26.20 26.20 26.20 27.20 26.20 27. Ang 166.83 127.98 137.68 15.72 20.61 Meacr 166.79 136.28 136.02 18.33 4 Sen 166.02 116.02 157.25 20.34 27.47 203.11 122.77 170.44 48.44 48.44 65.87 37.43 37.43 32.51 73.92 53.85 53.85 53.85 53.85 53.85 53.85 53.34 52.33 53.35 19.23 19.23 22.33 26.23 26.23 Ang 166.91 128.03 137.64 15.72 20.64 1 202.97 122.76 170.38 48.50 65.93 37.43 37.43 37.45 72.15 56.02 53.90 55.02 53.90 53.90 19.16 19.16 19.16 Ang 166.83 128.02 137.58 15.70 20.61 Tigl 167.45 128.57 128.57 137.90 14.45 14.45 N 202.93 122.79 48.41 65.86 65.86 65.86 65.86 74.71 74.71 74.71 75.86 55.86 54.06 55.86 54.06 55.86 54.06 55.86 21.36 19.14 19.14 Ang 166.83 127.98 137.75 15.73 20.63 Ang 167.28 128.11 138.29 15.82 20.63 Carbon R '= $\mathbb{R}^2 =$ C-10 C-13 C-14 C-15 C-11 C-12 5 22223 5555 3

Continued	
"	;
TARIE	

	24	203.69	122.77	170.77	48.85	66.02	37.54	73.17	35.58	73.19	57.33	52.92	23.34	21.76	10.01	26.23	Meacr	166.94	136.64	125.43	18.27		Н				1	
Compound	23	203.05	122.78	170.39	48.40	65.70	37.40	72.90	31.85	75.04	55.60	53.66	23.36	21.35	18.80	26.12	Meacr	166.48	136.52	125.38	18.30		Ac	170.77	21.10	1		
	22	202.84	122.79	170.28	48.44	65.78	37.51	72.76	32.32	75.04	55.92	53.79	23.35	21.28	18.90	26.18	Meacr	166.30	136.53	125.37	18.33	1	Meacr	166.77	136.18	126.26	18.37	
	21	203.19	122.80	170.37	48.49	65.84	37.61	72.99	32.36	73.82	56.00	53.87	23.32	21.29	19.02	26.24	Meacr	166.33	136.62	125.23	18.31	ļ	Sen	165.98	115.99	157.42	20.37	27.50
	20	203.00	122.78	170.37	48.49	65.87	37.58	72.83	32.45	74.64	56.07	53.87	23.34	21.28	18.95	26.23	Meacr	166.28	136.58	125.29	18.33		Tigl	167.41	128.52	138.06	14.50	12.16
	19	202.80	122.75	170.34	48.36	65.74	37.50	72.89	32.23	74.53	55.85	54.03	23.34	21.34	18.90	26.19	Meacr	166.24	136.52	125.31	18.31		Ang	167.08	127.95	138.67	15.84	20.64
	18	203.86	122.66	171.00	48.82	66.18	37.32	71.63	35.79	73.13	57.36	52.92	23.32	21.74	19.06	26.15	Sen	166.19	116.26	156.76	20.23	27.37	Н				1	
	17	203.06	122.76	170.39	48.45	62.89	37.20	71.41	32.14	75.22	55.56	53.71	23.32	21.32	18.87	26.05	Sen	165.73	116.13	156.66	20.24	27.31	Ac	170.76	21.08		1	
	16	202.96	122.76	170.37	48.46	65.96	37.30	71.25	32.55	75.23	55.90	53.82	23.33	21.26	18.96	26.10	Sen	165.56	116.13	156.58	20.25	27.31	Meacr	166.83	136.28	126.05	18.34	-
	15	203.28	122.82	170.46	48.51	66.03	37.43	71.48	32.62	73.99	56.03	53.89	23.35	21.30	19.13	26.20	Sen	165.65	116.23	156.51	20.26	27.34	Sen	166.11	116.09	157.26	20.38	27.47
	14	203.11	122.77	170.44	48.52	66.03	37.38	71.30	32.73	74.80	56.05	53.90	23.33	21.27	19.02	26.17	Sen	165.55	116.20	156.46	20.24	27.30	Tigl	167.48	128.56	137.91	14.45	12.13
	13	202.90	122.74	170.41	48.37	65.90	37.28	71.37	32.42	74.74	55.81	54.03	23.32	21.34	18.95	26.12	Sen	165.50	116.12	156.54	20.19	27.29	Ang	167.19	128.14	138.14	15.80	20.62
Carbon		C-1	C-2	C-3	C-4	C-3	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	R	C-1	C-2	C-3	C-4	C-5	$\mathbf{R}^2 =$	C-1	C-2	C-3	C-4	C-5

491

Continued
3.
TABLE

	36	204.58	122.67	171.70	48.92	66.59	38.23	69.34	38.87	73.72	57.46	52.71	23.42	21.91	17.67	26.49	Н			Н					
Compound	35	203.66	122.66	171.01	48.42	66.29	38.21	70.06	35.65	75.56	55.76	53.53	23.35	21.25	17.73	26.36	Н			Ac	170.46	21.18	1		
	34	203.46	122.68	170.83	48.45	66.33	38.22	70.25	35.72	75.82	55.94	53.66	23.35	21.26	17.74	26.39	Н			Meacr	166.57	136.18	126.25	18.34	
	33	203.86	122.63	171.11	48.43	66.35	38.19	70.13	35.77	74.31	55.99	53.68	23.37	21.26	17.74	26.38	Н			Sen	165.88	115.94	157.80	20.34	27.47
	32	203.70	122.62	171.01	48.45	66.40	38.21	70.22	35.74	75.39	56.03	53.71	23.36	21.27	17.74	26.38	Н		I	Tigl	167.15	128.49	138.12	14.47	12.13
	31	203.36	122.74	170.69	48.42	66.22	38.20	70.50	35.81	75.11	55.92	53.92	23.37	21.34	17.69	26.42	Н		1	Ang	167.05	127.76	139.01	15.98	20.72
	30	203.70	122.76	170.78	48.83	66.02	37.27	72.75	35.72	73.19	57.32	52.88	23.34	21.74	18.88	26.17	Ac	170.80	21.29	Н	1	ŀ	ł	I	1
	29	202.87	122.73	170.34	48.38	65.66	37.06	72.64	31.91	75.09	55.47	53.62	23.30	21.28	18.63	26.10	Ac	170.23	21.10	Ac	170.59	20.98	1		<u>_</u>
	28	202.83	122.80	170.26	48.47	65.79	37.16	72.57	32.34	75.12	55.84	50.80	23.33	21.28	18.71	26.10	Ac	170.18	21.08	Meacr	166.76	136.21	126.19	18.29	
	27	203.15	122.83	170.37	48.48	65.83	37.27	72.74	32.40	73.38	55.95	53.85	23.35	21.31	18.86	26.17	Ac	170.19	21.14	Sen	166.04	115.92	157.60	20.41	27.54
	26	203.04	122.76	170.41	48.45	65.82	37.20	72.58	32.44	74.65	55.97	53.81	23.35	21.28	18.75	26.13	Ac	170.14	21.11	Tigl	167.36	128.46	138.06	14.49	12.09
	25	202.89	122.74	170.42	48.38	65.70	37.17	72.69	32.27	74.61	55.82	54.01	23.31	21.32	18.73	26.11	Ac	170.11	21.07	Ang	167.07	127.90	138.74	15.84	20.54
Carbon		C-1	C-2	C-3	C-4	C-3	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	R'=	C-1	C-2	$\mathbf{R}^{2}=$	C-1	C-2	C-3	C-4	C-5

	ir ^a													
Compound	0.	-н	R	1	R	2	Unsaturated Ketone							
	Free	Bonded	O=C	C=C	O=C	C=C	O=C	C≐C						
1 ·	_		1710	1649	1710	1649	1672	1619						
2			1706	1650	1706	1650	1672	1618						
3	_	—	1711	1653	1711	1653	1672	1617						
4	_		1712	1651	1712	1638	1672	1617						
5	—	_	1713	1650	1724		1672	1618						
6	3598	3477	1703	1648		—	1672	1617						
7	—		1707	1650	1707	1650	1672	1618						
8	—		1702	1650	1702	1650	1672	1618						
9		—	1703	1652	1710	1652	1673	1618						
10			1708	1653	1708	1638	1672	1617						
11	—	—	1702	1652	1725	-	1671	1617						
12	3597	3486	1697	1653			1672	1617						
13			1701	1650	1711	1650	1672	1618						
14	_		1702	1650	1702	1650	1672	1618						
15	-	_	1701	1651	1712	1651	1672	1618						
16	—		1702	1651	1712	1640	1672	1617						
17			1700	1649	1722) —	1671	1617						
18	3595	3498	1696	1649		—	1671	1617						
19		—	1711	1638	1711	1648	1673	1618						
20	—		1709	1638	1709	1653	1672	1617						
21	—		1712	1639	1712	1651	1672	1618						
22	—		1712	1637	1712	1637	1672	1617						
23	—		1714	1637	1724	—	1672	1617						
24	3592	3420	1707	1638	—	—	1672	1617						
25		—	1732	—	1710	1648	1673	1617						
26			1732	—	1702	1651	1672	1617						
27	—		1733	—	1713	1653	1671	1617						
28	—	—	1732	—	1713	1637	1672	1617						
29	-		1731		1731		1671	1618						
30	3595	3487	1730	—	—	—	1672	1617						
31	3620	3486	—	—	1710	1650	1672	1618						
32	3609	3480	—		1699	1651	1671	1617						
33	3610	3470	—	—	1712	1651	1671	1617						
34	3604	3511	—	—	1712	1634	1671	1617						
35	3605	3458	—		1727	—	1671	1615						
36	3607	3429	—		—	—	1670	1616						

TABLE 4. Ir, uv, and Optical Activity of Compounds 1-36.

^a ν max in cm⁻¹ obtained from CHCl₃ solutions in NaCl cells.

^b λ max in nm from EtOH solutions.

^c[α] from CHCl₃ solutions (c = 0, 1). All values are positive.

shown in Figures 2c and 2d, respectively. Two-dimensional nmr measurements also allow distinction of the signals owing to C-7 and C-9 when they appear within a very narrow chemical shift range, which is the case of 24 (Table 3), because the signals of H-7 and H-9 have been assigned unambiguously (10).

The ¹H-coupled ¹³C-nmr spectra of 1, 30, and 35 allow several signals of quaternary carbons that show small chemical shift differences to be distinguished. For example, although in the spectrum of monoacetate 35 the difference between the resonances of C-3 and the ester carbonyl carbon is ca. 0.5 ppm, their assignment follows from a coupled spectrum in which the signal of C-3 appears as a complex multiplet and that of the COO group as a double quartet.

May-Jun 1989]

u	v ^b	Optical Activity ^c											
$\lambda_{\max}(\log \epsilon_1)$	$\lambda_{\max}^2 (\log \epsilon_2)$	[α] ₅₈₉	{α} ₅₇₈	{α} ₅₄₆	{α} ₄₃₆	{α} _{365 nm}							
219 (3.97)	248 (3.57)	57	59	67	134	389							
219 (4.14)	248 (3.64)	68	70	80	158	423							
220 (4.40)	248 (3.87)	72	75	88	180	495							
216 (4.27)	248 (3.97)	57	60	71	146	427							
220 (3.96)	248 (3.77)	38	40	48	109	388							
220 (3.67)	251 (3.45)	49	51	61	123	433							
219 (4.02)	249 (3.57)	58	62	73	155	464							
219 (4.35)	250 (3.90)	67	70	81	161	422							
221 (4.32)	248 (3.90)	71	74	87	179	483							
215 (4.29)	249 (3.86)	66	70	82	168	499							
219 (4.02)	248 (3.78)	40	41	48	107	381							
219 (4.00)	250 (3.74)	31	33	40	90	377							
220 (4.30)	248 (3.77)	50	53	62	140	396							
220 (4.29)	248 (3.75)	84	87	101	201	509							
221 (4.38)	247 (3.80)	72	78	90	177	457							
217 (4.32)	247 (3.93)	56	58	68	138	398							
220 (4.21)	248 (3.87)	40	42	49	109	369							
221 (4.09)	251 (3.70)	48	50	58	118	407							
217 (4.22)	247 (3.97)	62	66	78	163	502							
215 (4.45)	248 (4.08)	72	75	88	176	477							
217 (4.26)	248 (3.86)	70	74	86	179	495							
213 (4.21)	250 (3.94)	52	55	65	139	422							
212 (3.71)	249 (3.67)	39	40	48	114	403							
210 (3.90)	250 (3.93)	42	44	52	112	427							
221 (4.46)	249 (4.31)	76	81	95	203	553							
220 (3.96)	248 (3.71)	71	74	86	170	459							
221 (3.07)	246 (3.75)	58	60	71	149	411							
212 (3.69)	250 (3.64)	69	73	84	173	496							
211 (3.15)	250 (3.78)	46	48	57	122	407							
216 (3.36)	251 (3.82)	56	60	70	142	484							
222 (3.97)	249 (3.74)	50	52	62	134	472							
219 (3.98)	250 (3.70)	33	35	41	89	321							
220 (4.16)	250 (3.75)	50	54	63	134	430							
216 (4.14)	248 (3.88)	43	46	54	119	448							
212 (3.27)	251 (3.80)	70	72	84	173	533							
214 (3.24)	252 (3.72)	68	71	81	161	574							

TABLE 4. Ir, uv, and Optical Activity of Compounds 1-36.

In those compounds having two like ester residues (1, 8, 15, 22, and 29), the ¹Hand ¹³C-signals for each acyl group can be assigned specifically by comparison with the signals of compounds having unlike esters. For example, in the ¹H-nmr spectrum of 29, both acetate signals are distinguished by comparison with the chemical shifts of the 7-acetate group in 25 and the 9-acetate group in 5 (Table 2). The only exception is the assignment of the carbonyl signals of each acetate group in the ¹³C-spectrum of 29, which cannot be achieved by the comparative method because both signals appear in a very narrow chemical shift range of only 0.36 ppm (Table 3). Their distinction is achieved after irradiation of the protons of the acetyl group at C-9 (2.15 ppm) and inspection of the ¹³C spectrum, whereby the signal at 170.59 ppm changes from a double quartet ($J_{CH_3COOCH} = 3.5$ and $J_{CH_3COOCH} = 7.0$ Hz) to a doublet.

Finally, the mp, ir, uv, and optical activity data, which also can be useful to identify the natural products, are presented in Tables 1 and 4. From the present series of longipinenes only three (1, 3, and 5) are reported as solids (4,8) and thirteen (2, 4, 7–10, 15, 19–22, 31, and 33) as oils (see sources in Table 1). The ¹H-nmr data of the naturally occurring compounds 1, 3–5, 10, 22, and 31 (1,4,8) are in agreement with the present values, while for the natural products 2, 7–10, 15, 20, 21, and 33 only spectra of mixtures, lacking individual assignments, are reported (1–3). Furthermore, the constituents of *Stevia policephala* (2), *Stevia boliviensis* (3), and *Stevia mandonii* (3) should be isolated in pure form since the ¹H-nmr data derived from mixtures do not seem to establish the structures unequivocally.

EXPERIMENTAL

GENERAL APPARATUS.—Mp's were determined on a Fisher-Johns apparatus and are uncorrected. All nmr measurements were performed on a Varian Associates XL-300GS spectrometer. The ir spectra were obtained on a Nicolet MX-1-FT spectrophotometer, the uv spectra on a Unicam SP-800 spectrophotometer, and the optical rotations on a Perkin-Elmer 241 polarimeter. Chromatographic separations were made using Alcoa F-20 alumina (80–200 mesh).

GENERAL PROCEDURES FOR THE PREPARATION OF ESTERS.—A solution of the starting material, the acyl chloride, and the catalysts was stored at room temperature unless otherwise stated. After usual workup, the residue was chromatographed. All compounds were recrystallized from CH_2Cl_2 /hexane. Treatments involving angeloyl chloride were evaporated by heating the reaction mixture at 60° under an N_2 flow until dryness, followed by chromatography. The detailed reaction conditions are given in Table 1.

ACKNOWLEDGMENTS

Partial financial support from CoNaCyT (México) is acknowledged.

LITERATURE CITED

- 1. F. Bohlmann, C. Zdero, and S. Schöneweiss, Chem. Ber., 109, 3366 (1976).
- 2. F. Bohlmann, A. Suwita, A.A. Natu, H. Czerson, and A. Suwita, Chem. Ber., 110, 3572 (1977).
- 3. F. Bohlmann, L.N. Dutta, W. Dorner, R.M. King, and H. Robinson, Phytochemistry, 18, 673 (1979).
- 4. F. Bohlmann and C. Zdero, Liebigs Ann. Chem., 1764 (1985).
- 5. F. Bohlmann, C. Zdero, R.M. King, and H. Robinson, Liebigs Ann. Chem., 799 (1986).
- 6. R.R. Gil, J.C. Oberti, V.E. Sosa, and W. Herz, Phytochemistry, 26, 1459 (1987).
- 7. C. Zdero, F. Bohlmann, and G. Schmeda-Hirschmann, Phytochemistry, 26, 463 (1987).
- 8. J.M. Amaro, M. Adrián, C.M. Cerda, and P. Joseph-Nathan, Phytochemistry, 27, 1409 (1988).
- L.U. Román, J.D. Hernández, R. Castañeda, C.M. Cerda, and P. Joseph-Nathan, *Phytochemistry*, 28, 265 (1989).
- L.U. Román, R.E. del Río, J.D. Hernández, C.M. Cerda, D. Cervantes, R. Castañeda, and P. Joseph-Nathan, J. Org. Chem., 50, 3965 (1985).
- P. Joseph-Nathan, C.M. Cerda, R.E. del Río, L.U. Román, and J.D. Hernández, J. Nat. Prod., 49, 1053 (1986).
- 12. P.J. Beeby, Tetrahedron Lett., 3379 (1977).
- 13. G. Barger, W.F. Martin, and W. Mitchell, J. Chem. Soc., 1820 (1937).
- 14. P. Joseph-Nathan, J.R. Wesener, and H. Günther, Org. Magn. Reson., 22, 190 (1984).
- 15. P.J. Collin and S. Sternhell, Aust. J. Chem., 19, 317 (1966).
- 16. L.M. Jackman and R.H. Wiley, J. Chem. Soc., 2881 (1960).
- 17. E. Lippmaa, T. Pehk, K. Anderson, and C. Rappe, Org. Magn. Reson., 2, 109 (1970).
- 18. F. Bohlmann, N. Ates, J. Jakupovic, R.M. King, and H. Robinson, Phytochemistry, 21, 2691 (1982).

Received 1 September 1988